Capillary Two-Phase Thermal Devices - An Introduction

Jentung Ku
NASA/Goddard
Code 545
Greenbelt, Maryland
(301)286-3130
jentung.ku-1@nasa.gov

Outline

- Introduction/Overview
- Heat Pipes
- Capillary Pumped Loops
- Loop Heat Pipes
- Summary
- ** Thermal Devices
 - Hardware Construction
 - Operating Principles
 - Performance Characteristics
 - Applications
 - Current Development

Disclaimer

Note:

Opinions expressed in this presentation are the author's own,

and do not represent an official position of NASA.

Introduction

- Why Capillary Two-Phase Devices?
 - Two-phase capillary devices can transfer large heat loads over long distances with small temperature differences.
- Existing Capillary Two-Phase Devices
 - Heat Pipe
 - Capillary Pumped Loop
 - Loop Heat Pipe

Schematic of a Heat Pipe

Operating Principles of Capillary Two-Phase Devices

- Waste heat is absorbed by the working fluid through evaporation, transported to the heat sink, and dissipated through condensation.
- The capillary force developed at the liquid and vapor interface in the fine porous wick circulates the fluid.
 - The waste heat serves as the ultimate driving force.
- The capillary pressure will self adjust so that it is equal to the total pressure drop in the loop at all times.

• When the total pressure drop is equal to the maximum capillary pressure that the wick can sustain, the maximum heat transport capability is reached.

Pressure Balance in Capillary Two-Phase Devices

 As the liquid is vaporizing, a meniscus is formed at the liquid/vapor interface in the wick, and a capillary pressure is developed across the meniscus.

$$\Delta P_{cap} = 2\sigma \cos\theta/R$$

 The total pressure drop is the sum of pressure drops in various components.

$$\Delta \mathbf{P_{tot}} = \Delta \mathbf{P_{evap}} + \Delta \mathbf{P_{vap}} + \Delta \mathbf{P_{cond}} + \Delta \mathbf{P_{liq}} + \Delta \mathbf{P_{g}}$$

 The meniscus will curve naturally so the the capillary pressure is equal to the total pressure drop.

$$\Delta P_{\rm cap} = \Delta P_{\rm tot}$$

 The maximum capillary pressure that the wick can develop can be expressed as

$$\Delta P_{\text{cap,max}} = 2\sigma \cos\theta/R_{\text{p}}$$
 $R \ge R_{\text{p}}$

Heat Pipes

Functional Types Of Heat Pipes

- Three Basic Functional Types
 - Constant Conductance Heat Pipe (CCHP)
 - Variable Conductance Heat Pipe (VCHP)
 - Diode Heat Pipe
- Many Hardware Variations Exist.
 - Diameter
 - Length
 - Shape
 - Wick Material
 - Wick Construction
 - Working Fluid

Some Wicks Used in Heat Pipes

CIRCUMFERENTIAL SCREEN WICK

POWDER METAL WITH PEDESTAL ARTERY

AXIAL GROOVES

Energy Balance in Heat Pipe

Constant Conductance Heat Pipe

 $Q = h(\pi DL_c)(T_V - T_s)$ $L_c = Constant$ $T varies with T_s and/or Q$

Thermal Characteristics of a VCHP

Q = $h(\pi DL_c)(T_v - T_s)$ L_c varies with T_s and/or Q so as to keep T_v constant

Diode Heat Pipes

Pressure Drop Diagram of a Heat Pipe

Liquid Transport Factor vs Temperature

• Convenient figure of merit is liquid transport factor, N_I,

N₁ = latent heat * surface tension * density/ viscosity

Heat Pipe Design Considerations

- Determine the operating temperature range.
- Select the working fluid
 - Liquid transport factor
 - Never operate near the freezing temperature or the critical temperature of the working fluid.
- Select the container material.
 - Material compatibility
- Select the wick.
 - Material
- From the thermal requirement, determine the type of heat pipe.
 - CCHP, VCHP, Diode HP
- From the heat transport requirement, determine the heat pipe diameter and length, and number of heat pipes.
 - Temperature drop across the heat pipe
 - Temperature gradient requirement
 - Some computer models available

Pressure Drop Diagram of a Heat Pipe

• Heat Transport Limit

$$(QL)_{max} = QL_{eff}$$

 $L_{eff} = 0.5 L_e + L_a + 0.5 L_c$

Distance

b) Vapor and liquid pressure distributions

• Capillary pressure head:

$$\Delta P_{cap} \propto 1/r$$

• Liquid pressure drop:

$$\Delta P_{liq} \propto 1/r^2$$

Capillary Pumped Loops

Schematic of a Constant Conductance CPL

Schematic of a Variable Conductance CPL

Capillary Evaporator Pump

Schematic of a CPL with Multiple Evaporators and Multiple Condensers

Schematic of CPL 1

Schematic of HPSTM Demonstration System

HPSTM Thermal Performance

EOS-TERRA CPL Flow Schematic

Two Evaporator Designs

EOS - TERRA Spacecraft

Capillary Pumped Heat Transport System in EOS-TERRA

EOS-TERRA SWIR CPHTS Tubing Layout

CPHTS – SWIR Tubing Layout

CPLs on TERRA (EOS-AM)

- Two-phase loops (CPLs) are on SWIR, TIR and MOPPIT instruments.
- Terra launched December 18, 1999.
- On the next day, the first CPL system in a flight mission was started successfully.
- All 3 CPLs continue to demonstrate reliable, stable thermal control for their instruments.
- More than 3 years of successful operation

TERRA - Temperature Reset with Stable Control for the ASTER-SWIR Instrument

- July of 2001 -ASTER-SWIR cryo-coolers getting too hot.
- CPL loop temperature was reduced by 4.5 °C in 3 steps

External View of NCS and ASCS Systems in HST

HST AFT SHROUD (-V3 FORWARD)

CPL on HST/SM-3B

STS-108, Feb/2002

- → CPL was added to HST
 Aft Shroud on SM-3B
- Astronauts fed CPL evaporator through bottom of shroud, attached it to cryo-cooler, and attached new radiator to handrails.
- → CPL removes ~ 400 W heat from NICMOS cryocooler which allows the NICMOS sensor to be reactivated.
- Tight temperature control

HST ACS CPLs and ASCS Radiator Design

HST CPL/Radiator Assembly

Subcooler Section

Isothermalizer heat pipes

Heat Pipe Heat Exchangers

Reservoir Lines

HST Servicing Mission 3B

CAPL 3 SCHEMATIC

CAPL3 Radiator Assembly (Upside Down)

CAPL3 Flight Test Results

Cryogenic CPL Applications

INDIVIDUALLY COOLED SENSORS

THREE SENSORS, 12 CRYOCOOLERS THREE SENSORS 2 TO 6 CRYOCOOLERS

CCPL Flow Diagram

Cooling Source

CCPL-5 Flight Unit

CCPL Flight Test Results

CCPL Flight Test Results

Neon CCPL Ground Test Results

Loop Heat Pipes

Schematic of an LHP

- Main design features
 - The CC forms an integral part of the evaporator.
 - A primary wick with fine pore sizes provide the pumping force.
 - A secondary wick connects the CC and evaporator, providing liquid supply.

Main Characteristics of LHP

- High pumping capability
 - Metal wicks with 1 to 3 micron pores
 - 35 kPa pressure head with ammonia (4 meters in one-G)
- Robust operation
 - Secondary wick between CC and evaporator
 - Self start
 - Vapor tolerant
- CC is plumbed in line with flow circulation
 - Operating temperature depends on operating conditions.
 - Thermodynamic constraints exist.
 - Large external power may be required for temperature control.
 - Loop shutdown
 - Limited growth potential
 - » Single evaporator most common

LHP Operating Temperature

- The LHP operating temperature is governed by the CC temperature.
- The CC temperature is a function of
 - Evaporator power
 - Condenser sink temperature
 - Ambient temperature
 - Evaporator/CC design
- As the operating condition changes, the CC temperature will change during the transient, but eventually reaches a new steady temperature.
- The loop operating temperature can be controlled at a desired set point.

Energy Balance in LHP Operation

Effect of Sink Temperature on CC Temperature

LHP Operating Temperature Control

- Control LHP operating temperature by controlling the CC at a desired set point temperature.
- Heat the CC above its natural equilibrium temperature.
 - Control is lost once condenser heat dissipating capability is exceeded.
 - Control may be lost at low heat loads.
 - Overall conductance decreases.
 - Power requirement depends on heat load and sink temperature.
 - Alternate methods exist by heating the liquid line.
 - » Cross strap the vapor and liquid line
 - » VCHP
- Cool the CC below its natural equilibrium temperature
 - Practical only at low heat loads
 - Use TEC or secondary evaporator.

LHP Operating Temperature Control

LHP Operating Temperature Control NRL LHP

LHP Development History

• 1985	U.S. Patent granted to Maidanik, et al.
• 1989	LHP flight experiment on GRANAT (Russia)
• 1993	Multiple evaporator LHP
• 1997	American LHP flight experiment (NASA)
• 1997	Russian LHP flight experiment (NASA/DOD)
• 1999	LHPs on commercial satellites (Boeing)
• 2002	Cryogenic LHPs - nitrogen, hydrogen, neon (NASA/DOD)
• 2003	LHPs on ICESAT - GLAS (NASA)
• 2003	LHPs on COM2PLEX flight experiment (ESA)
 2004 (planned) 	LHPs on on EOS - AURA (NASA)
 2004 (planned) 	LHPs on GOES (NASA)
 2004 (planned) 	LHPs on SWIFT - BAT (NASA)
 2004 (planned) 	LHPs on AMS (NASA/ESA)
• 2004 (?)	LHPs ground applications (US company)

GLAS Laser and Component LHPs

GLAS Laser Temperatures

• LLHP Active Control is finer than can be measured in the laser telemetry when the LHP is at full 110 W of power

GLAS Laser Transient Data 02/28/03 (Instrument fully powered)

COM2PLEX Experiment Systems (ESA) Onboard Space Shuttle Columbia 2/2003

EOS-Aura TES Instrument Loop Heat Pipe Layout

Multiple Single-Evaporator LHPs

- Reasons to use multiple LHPs for the same heat source
 - Increase the overall heat transport capability
 - Increase system reliability with redundant loops
 - Reduce temperature gradients of heat source
 - Alternative to an LHP with multiple evaporators
- Issues of multiple LHPs
 - Some LHPs may not start and hence remain inactive over a range of heat load.
 - LHPs may operate at different temperatures.
 - Each LHP may carry a different heat load.
 - Heat source temperature will vary with heat load distribution.
 - Temperature gradient on heat source may be higher than expected.
- Design implications
 - Enough margin for heat transport
 - Enough margin for temperature gradients
 - Each LHP needs a temperature controller in order for them to operate at the desired temperature.

Schematic of Multiple LHPs

SWIFT BAT LHPs

LHP Start-up

- LHP start-up is a complex phenomenon.
- LHP can self start by directly applying power to the evaporator without pre-conditioning.
- Self-start does not always imply instant or quick start.
- Start-up depends on initial conditions inside evaporator.
 - Evaporator vapor grooves
 - » Liquid filled: superheat required for nucleate boiling
 - » Vapor presence: instant evaporation
 - Evaporator liquid core
 - » Liquid filled: low heat leak, small temperature overshoot
 - » Vapor presence: high heat leak, large temperature overshoot
- A minimum power is required for start-up under certain conditions.
- Current practice is to use a starter heater to enhance start-up success.

LHP Shutdown

- Some instrument operation requires LHP to shutdown for a period of time.
- LHP can continue to pump fluid if the evaporator temperature is higher than the CC temperature.
- LHP can not be shut down by simply applying power to liquid line as in a CPL.
 - Evaporator is vapor tolerant.
- Requirements for LHP shutdown
 - No net heat load to evaporator
 - CC temperature is higher than evaporator temperature
 - » Heating the CC is the only viable method
- Once the loop deprimes, fluid flow stops as long as there is no net heat load to evaporator.

LHP with Multiple Evaporators And Multiple Condensers

- LHP with multiple evaporators and condensers
 - Increased heat transport capability
 - Reduced temperature gradients of heat source
 - Multiple heat sources
 - Heat load sharing among evaporators
 - Multiple radiators
 - Flexibility in design and operation
- Multiple condensers
 - Flow regulators are desirable.
 - May yield multiple temperature hystereses
 - » Flow regulators will not eliminate hystereses
- Multiple evaporator LHP configurations
 - A common CC for all evaporators
 - » Limited capillary pressure head of secondary wicks
 - » Evaporators need to be close to one another
 - Parallel evaporators, each has its own integral CC

Multiple Evaporator LHP

$$P_{1,E} - P_{1,C} = (dP/dT) (T_{1,E} - T_{1,C})$$

 $P_{2,E} - P_{2,C} = (dP/dT) (T_{2,E} - T_{2,C})$

$$P_{1,C} - P_{2,C} = (dP/dT) (T_{1,C} - T_{2,C})$$

$$P_{1,E} - P_{2,E} = (dP/dT) (T_{1,E} - T_{2,E})$$

MELHP Test Set-up

MELHP Power Cycle Test - Loop Temperatures (C1/C2 Sinks at 273K/273K)

MELHP Power Cycle Test - Loop Temperatures

(CC1/CC2 Control Set at 308K, C1/C2 Sinks at 263K/258K)

Miniature Loop Heat Pipes

- Traditional LHP evaporators have 25.4mm diameter evaporators
- Evaporators with 13mm diameter have been made in last few years with excellent performance.
- Current goal is to develop evaporators with 6.35mm diameter.
- GSFC currently has three parallel development programs.
 - Joint effort with Air Force Lab (AFRL) to test 2 mini-LHPs manufactured by Russians - to be flown with CCQ Flight Experiment.
 - SBIR 2 program with contract to TTH Research Inc. completed 3/03.
 - 3 year CETDP program started in 12/2000 "Miniature Heat Transport System for Spacecraft Thermal Control"

Mini LHP for CCQ Flight Experiment

- Made by Russians
- To be flown for CCQ Flight Experiment in 2004(?)

Flat evaporator with integral compensation

CEDTP Miniature Loop Heat Pipes

- Miniature LHPs under the CETDP program.
 - Breadboards built by Swales and Thermacore

Ground Test Results of Thermacore miniLHP

Advanced LHP

TTH Miniature LHP - SBIR 2

Cryogenic LHPs

- Nitrogen LHP
 - TTH/Thermacore SBIR 2 (DOD)
 - 75K-100K
- Hydrogen LHP
 - TTH/Thermacore SBIR 2 (NASA)
 - 20-24K, 2.5W
- Neon LHP
 - TTH/Thermacore -SBIR 1 (NASA)
 - 30K-35K, 4W
- Helium LHP
 - Proposed for SBIR 2 (NASA)
 - 4K, 0.5W

Hydrogen LHP Test

Hydrogen LHP Test Results

Summary

Developments of Capillary Two-Phase Thermal Devices

CPL Characteristics

(1 of 2)

- Pre-conditioning of the loop is required in order to flood the loop prior to start-up.
- CPLs can not tolerate vapor bubbles in the evaporator core; need subcooling at all times.
- Current polyethylene wick has limited pumping capability.
 - Pore sizes around 20 microns
 - 3500Pa pumping head using ammonia
 - About 0.5 meter against gravity
- The reservoir provides very precise temperature control, regardless of heat load and sink temperature.
 - Outside the path of fluid flow saturation temperature is unaffected (little affected) by the loop operating condition.
 - The "master" that controls the loop temperature.
 - All transient are short-lived.

CPL Characteristics

(2 of 2)

- Power required to maintain reservoir temperature is small and independent of (insensitive to) the heat load.
- Reservoir can be located remotely from the evaporator.
 - Design flexibility
- Loops with multiple evaporators and multiple condensers have been demonstrated.
- Loops can be easily modified with reservoir re-sizing.
 - Evaporators are interchangeable between loops.
 - Transport lines and condensers can be changed.
- Loops are either functional or deprimed, no graceful degradation.
 - Needs re-start once deprimed.

LHP Characteristics (I of 2)

- Loops are very vapor tolerant, and provide robust operation.
- Metal wicks with pore size of about 1 micron provides high pumping capability.
 - 35KPa using ammonia
 - Over 4 meters against gravity
- The CC temperature is a function of heat load, sink temperature, ambient temperature, and pressure drop.
 - The CC is located along the path of the fluid flow).
 - The CC is only a "semi-master".
- The vapor void fraction inside the evaporator is a key factor in determining the loop operating temperature.
 - A "black box" which can not be controlled by the operator.

LHP Characteristics

(2 of 2)

- Temperature hysteresis has been observed in most existing loops.
- The operating temperature can be controlled. The heater power is dependent upon the heat load and sink temperature, and can be very large.
- In heat load sharing mode of operation, the operating temperature will be higher than the ambient temperature regardless of heat load and the sink temperature.
- Loops provide graceful degradation instead of complete deprime.
- Each evaporator/CC is uniquely designed for a given loop.
 - Usually not interchangeable among different loops
 - Very limited design flexibility
- Loops with multiple evaporators have been demonstrated.
 - Two or three evaporators seem to be the limit.

Selecting a Capillary Two-Phase Thermal Design

- It is the thermal engineer's responsibility to select the simplest and safest system that will suffice.
- Select traditional passive thermal designs if possible.
- Select CCHPs if possible.
- Selection of CPL or LHP may be compelling if not enabling.
- Certain mission-specific requirements may dictate the selection of CPL or LHP.
 - Both CPL and LHP have tremendous design flexibility.
- Use LHPs if
 - Temperature control is not too restrictive.
 - Real estate is not an issue in the evaporator vicinity.
 - Frequent start-up and shut-down during the mission is expected.
 - Significant thermal design is not expected as the project moves along.
 - Large body forces are expected during the mission.

Selecting a Capillary Two-Phase Thermal Design 2 of 2

Use CPLs if

- Infrequent start-up and shut-down are expected during mission operation.
- Very tight temperature control is required.
- Large uncertainties in thermal design exist in the early phases of project.
 - » Possible future growth of radiator size and/or transport line length
 - » Possible future growth in number of evaporators

Analytical Modeling

- HP Models
 - GAP for CCHPs
 - VCHP
 - SINDA/Fluint
- CPL Models
 - SINDA
 - SINSA/Fluint
- LHP Models
 - Several institutions have developed steady state models.
 - » Based on concurrent pressure and energy balances at each element
 - » Spread sheet format
 - LHP transient model
 - » Difficult due to complex physical processes
 - » Some models exist
 - » Utilize other thermal analyzers to provide boundary conditions
 - » SBIR 2 program on-going
- Dimensionless Groups

Simplified LHP Thermal Network

